Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile.
نویسندگان
چکیده
The anaerobic gastrointestinal pathogen Clostridium difficile must form a metabolically dormant spore to survive in oxygenic environments and be transmitted from host to host. The regulatory factors by which C. difficile initiates and controls the early stages of sporulation in C. difficile are not highly conserved in other Clostridium or Bacillus species. Here, we investigated the role of two conserved oligopeptide permeases, Opp and App, in the regulation of sporulation in C. difficile. These permeases are known to positively affect sporulation in Bacillus species through the import of sporulation-specific quorum-sensing peptides. In contrast to other spore-forming bacteria, we discovered that inactivating these permeases in C. difficile resulted in the earlier expression of early sporulation genes and increased sporulation in vitro. Furthermore, disruption of opp and app resulted in greater virulence and increased the amounts of spores recovered from feces in the hamster model of C. difficile infection. Our data suggest that Opp and App indirectly inhibit sporulation, likely through the activities of the transcriptional regulator SinR and its inhibitor, SinI. Taken together, these results indicate that the Opp and App transporters serve a different function in controlling sporulation and virulence in C. difficile than in Bacillus subtilis and suggest that nutrient availability plays a significant role in pathogenesis and sporulation in vivo. This study suggests a link between the nutritional status of the environment and sporulation initiation in C. difficile.
منابع مشابه
The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in Clostridium difficile.
The formation of spores is critical for the survival of Clostridium difficile outside the host gastrointestinal tract. Persistence of C. difficile spores greatly contributes to the spread of C. difficile infection (CDI), and the resistance of spores to antimicrobials facilitates the relapse of infection. Despite the importance of sporulation to C. difficile pathogenesis, the molecular mechanism...
متن کاملIsolation and characterization of mutants of the Bacillus subtilis oligopeptide permease with altered specificity of oligopeptide transport.
Bacterial oligopeptide permeases are members of the large family of ATP binding cassette transporters and typically import peptides of 3 to 5 amino acids, apparently independently of sequence. Oligopeptide permeases are needed for bacteria to utilize peptides as nutrient sources and are sometimes involved in signal transduction pathways. The Bacillus subtilis oligopeptide permease stimulates co...
متن کاملA novel regulator controls Clostridium difficile sporulation, motility and toxin production.
Clostridium difficile is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gen...
متن کاملRegulation of Clostridium difficile Spore Formation by the SpoIIQ and SpoIIIA Proteins
Sporulation is an ancient developmental process that involves the formation of a highly resistant endospore within a larger mother cell. In the model organism Bacillus subtilis, sporulation-specific sigma factors activate compartment-specific transcriptional programs that drive spore morphogenesis. σG activity in the forespore depends on the formation of a secretion complex, known as the "feedi...
متن کاملInducible Expression of spo0A as a Universal Tool for Studying Sporulation in Clostridium difficile
Clostridium difficile remains a leading nosocomial pathogen, putting considerable strain on the healthcare system. The ability to form endospores, highly resistant to environmental insults, is key to its persistence and transmission. However, important differences exist between the sporulation pathways of C. difficile and the model Gram-positive organism Bacillus subtilis. Amongst the challenge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 82 10 شماره
صفحات -
تاریخ انتشار 2014